The Role of High Excitations in Constructing Sub-spectroscopic Accuracy Intermolecular Potential of He-HCN: Critically Examined by the High-Resolution Spectra with Resonance States†

2017 
Interpreting high-resolution rovibrational spectra of weakly bound complexes commonly requires spectroscopic accuracy (<1 cm−1) potential energy surfaces (PES). Constructing high-accuracy ab initio PES relies on the high-level electronic structure approaches and the accurate physical models to represent the potentials. The coupled cluster approaches including single and double excitations with a perturbational estimate of triple excitations (CCSD(T)) have been termed the “gold standard” of electronic structure theory, and widely used in generating intermolecular interaction energies for most van der Waals complexes. However, for HCN-He complex, the observed millimeter-wave spectroscopy with high-excited resonance states has not been assigned and interpreted even on the ab initio PES computed at CCSD(T) level of theory with the complete basis set (CBS) limit. In this work, an effective three-dimensional ab initio PES for HCN-He, which explicitly incorporates dependence on the Q1 (C–H) normal-mode coordinat...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    71
    References
    3
    Citations
    NaN
    KQI
    []