Therapeutic activity of an inhaled potent SARS-CoV-2 neutralizing human monoclonal antibody in hamsters

2020 
SARS-CoV-2 infection results in viral burden in the upper and lower respiratory tract, enabling transmission and often leading to substantial lung pathology. Delivering the antiviral treatment directly to the lungs has the potential to improve lung bioavailability and dosing efficiency. As the SARS-CoV-2 Receptor Binding Domain (RBD) of the Spike (S) is increasingly deemed to be a clinically validated target, RBD-specific B cells were isolated from patients following SARS-CoV-2 infection to derive a panel of fully human monoclonal antibodies (hmAbs) that potently neutralize SARS-CoV-2. The most potent hmAb, 1212C2 was derived from an IgM memory B cell, has high affinity for SARS-CoV-2 RBD which enables its direct inhibition of RBD binding to ACE2. The 1212C2 hmAb exhibits in vivo prophylactic and therapeutic activity against SARS-CoV-2 in hamsters when delivered intraperitoneally, achieving a meaningful reduction in upper and lower respiratory viral burden and lung pathology. Furthermore, liquid nebulized inhale treatment of SARS-CoV-2 infected hamsters with as low as 0.6 mg/kg of inhaled dose, corresponding to approximately 0.03 mg/kg of lung deposited dose, mediated a reduction in respiratory viral burden that is below the detection limit, and mitigated lung pathology. The therapeutic efficacy achieved at an exceedingly low-dose of inhaled 1212C2 supports the rationale for local lung delivery and achieving dose-sparing benefits as compared to the conventional parenteral route of administration. Taken together, these results warrant an accelerated clinical development of 1212C2 hmAb formulated and delivered via inhalation for the prevention and treatment of SARS-CoV-2 infection.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    9
    Citations
    NaN
    KQI
    []