Tailoring the morphology and epoxy group content of glycidyl methacrylate-based polyHIPE monoliths via radiation-induced polymerization at room temperature

2018 
Glycidylmethacrylate (GMA)-based poly(high internal phase emulsion) (polyHIPE) monoliths were prepared using a HIPE template via radiation-induced polymerization at room temperature. The effects of surfactant content, cross-linking degree, water fraction, and porogen content on the surface area, average void diameter, distribution of void diameter, average interconnection diameter, average pore diameter, and epoxy group content of GMA-based polyHIPE monoliths were investigated. The morphology and epoxy group content of GMA-based polyHIPE monoliths may be tailored by tuning each of the factors above according to the requirements of specific applications. Finally, the different morphology and epoxy group content of GMA-based polyHIPE monoliths were applied in phenol removal from cigarette smoke (CS) through a reaction between the epoxy group and phenol. The results showed that GMA-based polyHIPE monoliths with the higher content of epoxy group and bigger surface area showed the higher rate of phenol removal.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    53
    References
    11
    Citations
    NaN
    KQI
    []