Finite Element Analysis of Electromagnetic Fields Emitted by Overhead High-Voltage Power Lines

2021 
The overhead high-voltage power lines (OHVPLs) are considered significant sources of extremely low frequency (ELF) electric and magnetic fields (EMFs), whose potential health effects became during the past decades a matter of scientific debate and public concern all over the world. In this chapter, a simple and yet effective finite element (FE) approach is proposed to compute and analyze—from the perspective of public exposure—both electric and magnetic fields emitted by typical configurations of OHVPLs belonging to the Romanian power grid. First, a 2D ANSYS Maxwell model is developed for the specific instance of a 110 kV double-circuit OHVPL and validated against two software tools based on quasi-static analytical methods, PowerELT and PowerMAG. Next, it will be used to investigate exposure to ELF-EMFs emitted by a selection of OHVPLs with nominal voltages of 110 kV, 220 kV and 400 kV, taking into consideration influencing factors such as loading, phasing and ground clearance. Compliance with the exposure guidelines specified by the International Commission on Non-Ionizing Radiation Protection (ICNIRP) for general public is assessed for each particular case. As a result, all calculated magnetic fields are below the ICNIRP limit of 100 μT, while the electric fields exceed the ICNIRP limit of 5000 V/m only in limited areas beneath the 400 kV OHVPLs. The calculated field levels are in line with those reported in the scientific literature for similar OHVPLs.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    31
    References
    0
    Citations
    NaN
    KQI
    []