X-ray diffraction of ramp-compressed aluminum to 475 GPa

2018 
We report on a series of experiments that use high-power lasers to ramp-compress aluminum (Al) up to 475 GPa. Under this quasi-isentropic compression, Al remains in the solid state and two solid–solid phase transformations are observed. In situ x-ray diffraction is performed to detect the crystal structure. A velocimetry diagnostic measures particle velocities in order to infer the pressure in the Al sample. We show that a solid–solid phase transition, consistent with a transformation to a hexagonal close-packed (hcp) structure, occurs at 216 ± 9 GPa. At higher pressures, a transformation to a structure consistent with the body-centered cubic (bcc) structure occurs at 321 ± 12 GPa. These phase transitions are also observed in 6061-O (annealed) Al alloy at 175 ± 9 GPa and 333 ± 11 GPa, respectively. Correlations in the high-pressure crystallographic texture suggests the close-packed face-centered cubic (fcc) (111), hcp (002), and bcc (110) planes remain parallel through the solid–solid fcc–hcp and hcp–bcc ...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    54
    References
    9
    Citations
    NaN
    KQI
    []