Potent anti-tumor killing activity of the multifunctional Treg cell line HOZOT against human tumors with diverse origins.

2011 
: The T cell line HOZOT has a unique FOXP3+CD4+ CD8+CD25+ phenotype, exhibits suppressive activity in allogeneic mixed lymphocyte reactions (MLR), and produces IL-10, defining HOZOT as regulatory T cells (Tregs). Interestingly, in addition to possessing a suppressive Treg ability, HOZOT was also found to show cytotoxicity against certain representative human cancer cell types. In order to disclose the range of anti-tumor activity by HOZOT, we screened it by using a panel of twenty human tumor cell lines with different origins. Consequently, HOZOT showed potent cytocidal effects against a wide spectrum of neoplastic cells including carcinomas, sarcomas, mesotheliomas and glioblastomas except for hematopoietic malignancies. Its anti-tumor activity was strong enough with an E:T ratio of 4:1, which is considered to be more effective than that by conventional CTLs. Furthermore, an in vivo representative mouse tumor model by implanting human colon adenocarcinoma cells revealed that adoptive transfer of HOZOT almost completely eradicated disseminated lesions on peritoneum, markedly reduced metastases in lung and liver, and dramatically decreased bloody ascites caused by peritoneal carcinomatosis. Treatment of the tumor model mice by HOZOT with an E:T ratio of 2:1 even indicated the prolongation of their survival, although not reaching obvious statistical significance. In vitro blocking experiments using antibodies and inhibitors suggested that the cytotoxic mechanism of HOZOT against tumors is different from conventional cytotoxic cells such as CTL, NK or NKT cells. Altogether, our studies demonstrated the potent killing activity of HOZOT against a broad range of human malignancies, which indicates that HOZOT is a powerful tool in immunotherapy for advanced stage tumors.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    3
    Citations
    NaN
    KQI
    []