Manipulating the Interfacial Energetics of n-type Silicon Photoanode for Efficient Water Oxidation

2016 
The photoanodes with heterojunction behavior could enable the development of solar energy conversion, but their performance largely suffers from the poor charge separation and transport process through the multiple interfacial energy levels involved. The question is how to efficiently manipulate these energy levels. Taking the n-Si Schottky photoanode as a prototype, the undesired donor-like interfacial defects and its adverse effects on charge transfer in n-Si/ITO photoanode are well recognized and diminished through the treatment on electronic energy level. The obtained n-Si/TiOx/ITO Schottky junction exhibits a highly efficient charge transport and a barrier height of 0.95 eV, which is close to the theoretical optimum for n-Si/ITO Schottky contact. Then, the holes extraction can be further facilitated through the variation of surface energy level, with the NiOOH coated ITO layer. This is confirmed by a 115% increase in surface photovoltage of the photoanodes. Eventually, an unprecedentedly low onset po...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    49
    References
    95
    Citations
    NaN
    KQI
    []