Design and evaluation of new honeycomb configurations with high in-plane/out-of-plane loading-carrying capacity under impact

2021 
An aluminum honeycomb is widely used in the field of impact cushioning because of its excellent performance. In order to solve the problem of large difference between the in-plane and out-of-plane load-carrying capacities of traditional honeycombs, three new configurations of honeycombs were proposed as follows: bow-shaped, staggered and folded configurations. The finite element models for these new honeycombs were established, and their deformation modes and load-carrying capacities were analyzed. The results show that under the same relative density, compared with the traditional hexagonal honeycombs, the three new configurations can reduce the difference of load-carrying capacity in in-plane and out of plane directions. The average in-plane/out of plane (I/O) ratio of loading-carrying capacity of the bow-shaped honeycombs in two coplanar directions increased by 21.3 times. For the staggered honeycomb, the load-carrying capacity of each in-plane direction is of great difference, in which the I/O ratio of the excellent direction is increased by 42 times due to its special structure. For the folded honeycomb, the I/O ratio is increased by 21.3 times on average. The research results can provide a new idea and reference for the design of honeycomb structure under multi-directional impact load.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []