Thermal degradation of polyurethane bicomponent systems in controlled atmospheres

2005 
Although the thermal degradation of polyurethanes has been extensively studied in the past, the use of a panoply of recent analytical techniques has provided more detailed data and enabled us to confirm prior findings on the thermal degradation of bicomponent polyurethanes. The thermal behaviour of bicomponent polyurethanes in conditions of controlled atmosphere and temperature was characterized by determining their heat stability by on-line TGA/FT-IR coupling and off-line TGA/TCT/GC/MS coupling in order to identify the volatile compounds released. Degradation residues were analyzed by FT-IR and MALDI-TOF (matrix assisted laser desorption /ionization coupled with time-of-flight) mass spectrometry. A major drawback of these thermoplastic elastomers is that one of the components, isocyanate, is toxic. Based on the data obtained with model urethane compounds (p-TI-based) and bicomponent polyurethane polymer (MDI- and PEG-based), we show that the thermal degradations are different. The widespread application of these materials exposes them to extreme working conditions, which is why we propose reaction mechanisms for their degradation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    38
    References
    17
    Citations
    NaN
    KQI
    []