A General Method To Increase Stokes Shift by Introducing Alternating Vibronic Structures

2018 
Fluorescent dyes have enabled much progress in the broad range of biomedical fields. However, many commercially available dyes suffer from small Stokes shifts, resulting in poor signal-to-noise ratio and self-quenching on current microscope configurations. In this work, we have developed a general method to significantly increase the Stokes shifts of common fluorophores. By simply appending a 1,4-diethyl-decahydro-quinoxaline (DQ) moiety onto the conjugated structure, we introduced a vibronic backbone that could facilely expand the Stokes shifts, emission wavelength, and photostability of 11 different fluorophores by more than 3-fold. This generalizable method could significantly improve the imaging efficiency of commercial fluorophores. As a demonstration, we showed that the DQ derivative of hemicyanine generated 5-fold signal in mouse models over indocyanine green. Furthermore, the DQ-modified fluorophores could pair with their parent molecules to conduct one-excitation, multiple emission imaging, allow...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    50
    References
    129
    Citations
    NaN
    KQI
    []