A distinctive neural nexus in blind individuals supports Braille reading

2021 
In the absence of visual input, occipital 'visual' cortex of blind people has been found to be engaged in non-visual higher cognitive tasks. Although the increased functional connectivity between 'visual' cortex and frontal cortex in the blind has been observed, the specific organization and functional role of this connectivity change remain to be elucidated. Here, we tested resting-state functional connectivity for primary 'visual' cortex (V1) and higher-tier lateral occipital cortex (LOC) in people with acquired blindness, and found an enhanced connectivity between the LOC but not V1 and typical frontal language areas - the inferior frontal cortex (IFC). In fact, the left-lateralized LOC-IFC connectivity strength predicted blind individuals' natural Braille reading proficiency. Furthermore, an increased bidirectional information flow between the left LOC and IFC was observed during a natural Braille reading task. In particular, the task-relevant modulation of the top-down communication from left IFC to LOC was significantly stronger than that of the bottom-up communication. Altogether, our study identified a distinctive neural nexus, LOC-IFC connection, and its behavioral significance in the acquired blind, revealing the neural correlates of the crossmodal plasticity in their 'visual' cortex underlying natural Braille reading.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    66
    References
    0
    Citations
    NaN
    KQI
    []