An adaptive real-time grey-box model for advanced control and operations in WRRFs

2021 
Grey-box models, which combine the explanatory power of first-principle models with the ability to detect subtle patterns from data, are gaining increasing attention in wastewater sectors. Intuitive, simple structured but fit-for-purpose grey-box models that capture time-varying dynamics by adaptively estimating parameters are desired for process optimization and control. As an example, this study presents the identification of such a grey-box model structure and its further use by an extended Kalman filter (EKF), for the estimation of the nitrification capacity and ammonia concentrations of a typical Modified Ludzack-Ettinger (MLE) process. The EKF was implemented and evaluated in real time by interfacing Python with SUMO (Dynamita™), a widely used commercial process simulator. The EKF was able to accurately estimate the ammonia concentrations in multiple tanks when given only the concentration in one of them. In addition, the nitrification capacity of the system could be tracked in real time by the EKF, which provides intuitive information for facility managers and operators to monitor and operate the system. Finally, the realization of EKF is critical to the development of future advance control, for instance, model predictive control.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    20
    References
    0
    Citations
    NaN
    KQI
    []