Bidirectional transfer of quantum information for unknown photons via cross-Kerr nonlinearity and photon-number-resolving measurement

2016 
We propose an arbitrary controlled-unitary(CU) gate and a bidirectional transfer scheme of quantum information(BTQI) for unknown photons.The proposed CU gate utilizes quantum non-demolition photon-number-resolving measurement based on the weak cross-Kerr nonlinearities(XKNLs) and two quantum bus beams;the proposed CU gate consists of consecutive operations of a controlled-path gate and a gathering-path gate.It is almost deterministic and is feasible with current technology when a strong amplitude of the coherent state and weak XKNLs are employed.Compared with the existing optical multi-qubit or controlled gates,which utilize XKNLs and homodyne detectors,the proposed CU gate can increase experimental realization feasibility and enhance robustness against decoherence.According to the CU gate,we present a BTQI scheme in which the two unknown states of photons between two parties(Alice and Bob) are mutually swapped by transferring only a single photon.Consequently,by using the proposed CU gate,it is possible to experimentally implement the BTQI scheme with a certain probability of success.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []