Role of hypoxia in skeletal muscle fibrosis: Synergism between hypoxia and TGF-β signaling upregulates CCN2/CTGF expression specifically in muscle fibers

2019 
Abstract (not structured and no more than 200 words) Several skeletal muscle diseases are characterized by fibrosis, the excessive accumulation of extracellular matrix. Transforming growth factor-β (TGF-β) and connective tissue growth factor (CCN2/CTGF) are two profibrotic factors augmented in fibrotic skeletal muscle, together with signs of reduced vasculature that implies a decrease in oxygen supply. We observed that fibrotic muscles are characterized by the presence of positive nuclei for hypoxia-inducible factor-1α (HIF-1α), a key mediator of the hypoxia response. However, it is not clear how a hypoxic environment could contribute to the fibrotic phenotype in skeletal muscle. We evaluated the role of hypoxia and TGF-β on CCN2 expression in vitro. Fibroblasts, myoblasts and differentiated myotubes were incubated with TGF-β1 under hypoxic conditions. Hypoxia and TGF-β1 induced CCN2 expression synergistically in myotubes but not in fibroblasts or undifferentiated muscle progenitors. This induction requires HIF-1α and the Smad-independent TGF-β signaling pathway. We performed in vivo experiments using pharmacological stabilization of HIF-1α or hypoxia-induced via hindlimb ischemia together with intramuscular injections of TGF-β1, and we found increased CCN2 expression. These observations suggest that hypoxic signaling together with TGF-β signaling, which are both characteristics of a fibrotic skeletal muscle environment, induce the expression of CCN2 in skeletal muscle fibers and myotubes.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    93
    References
    25
    Citations
    NaN
    KQI
    []