The endoplasmic reticulum adopts two distinct tubule forms

2021 
The endoplasmic reticulum (ER) is a versatile organelle with diverse functions. Through super-resolution microscopy, we show that the peripheral ER in the mammalian cell adopts two distinct forms of tubules. Whereas an ultrathin form, R1, is consistently covered by ER-membrane curvature-promoting proteins, e.g., Rtn4 in the native cell, in the second form, R2, Rtn4 and analogs are arranged into two parallel lines at a conserved separation of ~105 nm over long ranges. The two tubule forms together account for ~90% of the total tubule length in the cell, with either one being dominant in different cell types. The R1-R2 dichotomy and the final tubule geometry are both co-regulated by Rtn4 (and analogs) and the ER sheet-maintaining protein Climp63, which respectively define the edge curvature and lumen height of the R2 tubules to generate a ribbon-like structure of well-defined width. Accordingly, the R2 tubule width correlates positively with the Climp63 intralumenal size. The R1 and R2 tubules undergo active remodeling at the second/sub-second time scales as they differently accommodate proteins, with the former effectively excluding ER-luminal proteins and ER-membrane proteins with large intraluminal domains. We thus uncover a dynamic structural dichotomy for ER tubules with intriguing functional implications.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    39
    References
    0
    Citations
    NaN
    KQI
    []