Molecular characterization and xenogenic application of Wharton's jelly derived caprine mesenchymal stem cells.

2014 
Aim of the present study was in vitro expansion and characterization of caprine wharton’s jelly derived mesenchymal stem cells (cWJ-MSCs) to investigate their tissue healing potential in xenogenic animal model. Plastic adherent fibroblastoid cell populations with distinctive homogeneous morphology were isolated from caprine wharton’s jelly explants. These wharton’s jelly derived cells were found positive for the surface markers CD-73, STRO-1 and CD-105, whereas they were negative for hematopoetic stem cell marker CD-34. In vitro cultured cWJ-MSCs also showed differentiation properties into osteogenic, adipogenic and chondrogenic lineages as demonstrated by von Kossa, Oil Red- O and Alcian blue staining respectively, which was further confirmed and quantified by flow cytometric analysis. Furthermore, these well characterized cWJ-MSCs were evaluated for the wound-healing potential in full-thickness skin wounds in rabbit model for 28 days. Caprine WJ- MSCs treated skin wounds showed significantly (P < 0.05) higher percentage of wound contraction especially at the 21st day post transplantation when compared to PBS treated control group animals. Further, we observed better healing potential of cWJ-MSCs in terms of histo-morphological evaluation, epithelialisation and collagenization with matured vascularization stage by day 28 as compared to control. In conclusion, cWJ- MSCs provide an alternative inexhaustible source of mesenchymal stem cells and also unravel new perspectives pertaining to the therapeutic use of these cells in different species.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    50
    References
    16
    Citations
    NaN
    KQI
    []