language-icon Old Web
English
Sign In

Overview of PAF-Degrading Enzymes.

2015 
Because the acetyl group of 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine (PAF) is essential for its biological activity, the degradation of PAF is the most important mechanism that regulates the level of PAF. The enzyme that catalyzes the hydrolysis of acetyl group at the sn-2 position of PAF was termed PAF-acetylhydrolase (PAF-AH). Subsequent research revealed that the PAF-AH family includes intracellular forms called PAF-AH I and PAF-AH II as well as an extracellular isoform, plasma PAF-AH. PAF-AH I forms a complex consisting of catalytic subunits α1, α2, and β regulatory subunits. PAF-AH I was identified from the brain, and previous studies focused on the role of PAF-AH I in brain development. However, subsequent studies found that PAF-AH I is involved in diverse functions such as spermatogenesis, amyloid-β generation, cancer pathogenesis, and protein trafficking. Another intracellular enzyme, PAF-AH II, has no homology with PAF-AH I, although this enzyme shares sequence similarity to plasma PAF-AH. Because PAF-AH preferentially hydrolyzes oxidatively modulated or truncated phospholipids, it is considered to play a protective role against oxidative stress. Homologs of this enzyme are widely distributed among evolutionarily diverse organisms. For example, studies of Caenorhabditis elegans PAF-AH II demonstrate its contribution to epidermal morphogenesis. Extracellular plasma PAF-AH associates strongly with plasma lipoproteins. Because PAF-AH is mainly associated with LDL particles, it is considered to play an anti-inflammatory role by removing oxidized phospholipids generated in LDLs exposed to oxidative stress. In this overview, we describe the crucial roles of these three PAF-degrading enzymes in cell function and cell pathology.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    90
    References
    14
    Citations
    NaN
    KQI
    []