Robust Pseudocapacitive Na+ Intercalation Induced by Cobalt Vacancies at Atomically Thin Co1-xSe2/Graphene Heterostructure

2021 
Electronic structure engineering on electrode materials could bring in a new mechanism to achieve high energy and high power densities in sodium ion batteries. Herein, we design and create Co vacancies at the interface of atomically thin CoSe 2 /graphene heterostructure and obtain Co 1-x Se 2 /graphene heterostructure electrode materials that facilitate significant Na + intercalation pseudocapacitance. Density functional theory (DFT) calculation suggests that the Na + adsorption energy is dramatically increased, and the Na + diffusion barrier is remarkably reduced due to the introduction of Co vacancy. The optimized electrode delivers a superior capacity of 673.6 mAh g -1 at 0.1 C, excellent rate capability of 576.5 mAh g -1 at 2.0 C and ultra-long life up to 2000 cycles. Kinetics analysis indicates that the enhanced Na + storage is mainly attributed to the intercalation pseudocapacitance induced by Co vacancies. This work suggests that the creation of cation vacancy could bestow heterostructured electrode materials with pseudocapacitive Na + intercalation for high-capacity and high-rate energy storage.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    42
    References
    1
    Citations
    NaN
    KQI
    []