Static behaviour of glass fibre reinforced novel composite sleepers for mainline railway track

2021 
Abstract This study proposed three new railway sleeper concepts for a mainline track and investigated experimentally and numerically to understand their behaviours. These sleepers are fabricated with (a) a rubberised cement concrete block embedded in Particulate Filled Resin (PFR) and reinforced with Glass Fiber Reinforced Polymer (GFRP) bars (Concept-1), (b) cement concrete block reinforced with GFRP bars (Concept-2), and (c) GFRP pultruded sections filled with rubberised cement concrete and embedded in PFR (Concept-3). The structural behaviour of the railway sleepers is evaluated experimentally under five-point static bending and is verified by Beams on Elastic Foundation analysis. Moreover, an in-depth investigation of the in-track behaviour of sleeper was conducted using finite element simulation. Results show that the flexural properties of sleeper Concept-1 is equivalent to a recycled plastic sleeper, Concept-2 is between a recycled plastic and a softwood timber while Concept-3 is identical to a softwood timber sleeper. The results from this study generated new composite sleeper concepts from a price point that makes them commercially viable and meet structural performance to replace existing timber sleepers in a mainline railway track.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    31
    References
    31
    Citations
    NaN
    KQI
    []