Two Dimensional Magnetic Coordination Polymers Formed by Lanthanoids and Chlorocyananilato

2018 
Here we show the important role played by the size of the lanthanoid and the solvent used in the final structures of several two-dimensional magnetic coordination polymers with the ligand chlorocyananilato, (C6O4(CN)Cl)2−. With this aim we have prepared five compounds: [Nd2(C6O4(CN)Cl)3(DMF)6] (1) (DMF = dimethylformamide), [Dy2(C6O4(CN)Cl)3(DMF)6]·4H2O (2), [Ho2(C6O4(CN)Cl)3(DMF)6]·2H2O (3), and [Ln2(C6O4(CN)Cl)3(DMSO)6] with Ln = Ce (4) and Nd (5) (DMSO = dimethylsulfoxide). These compounds are formed by two dimensional networks with a (6,3)-topology but, depending on the size of the lanthanoid and on the solvent used, show important structural differences, including the size, shape, distortion and content of the cavities as well as the flatness of the layers. The comparison of compounds 1–3 and 4–5 shows the role played by the size of the lanthanoid while keeping constant the solvent, whereas, the comparison of compounds 1 and 5 shows the role of the solvent (DMF vs. DMSO) while keeping constant the lanthanoid. The magnetic properties of all of them show the absence of noticeable magnetic interactions, in agreement with previous results that can be explained by the internal character of the 4f electron and the weak magnetic coupling mediated by these anilato-based ligands.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    46
    References
    12
    Citations
    NaN
    KQI
    []