The effects of temperature on product yields and composition of bio-oils in hydropyrolysis of rice husk using nickel-loaded brown coal char catalyst.

2012 
Abstract Hydropyrolysis of rice husk was performed using nickel-loaded Loy Yang brown coal char (Ni/LY) catalyst in a fluidized bed reactor at 500, 550, 600 and 650 °C with an aim to study the influence of catalyst and catalytic hydropyrolysis temperature on product yields and the composition of bio-oil. An inexpensive Ni/LY char was prepared by the ion-exchange method with nickel loading rate of 9 ± 1 wt.%. Nickel particles which dispersed well in Loy Yang brown coal char showed a large specific surface area of Ni/LY char of 350 m 2 /g. The effects of catalytic activity and hydropyrolysis temperature of rice husk using Ni/LY char were examined at the optimal condition for bio-oil yield (i.e., pyrolysis temperature 500 °C, static bed height 5 cm, and gas flow rate 2 L/min without catalyst). In the presence of catalyst, the oxygen content of bio-oil decreased by about 16% compared with that of non-catalyst. Raising the temperature from 500 to 650 °C reduced the oxygen content of bio-oil from 27.50% to 21.50%. Bio-oil yields decreased while gas yields and water content increased with increasing temperature due to more oxygen being converted into H 2 O, CO 2 , and CO. The decreasing of the oxygen content contributed to a remarkable increase in the heating value of bio-oil. The characteristics of bio-oil were analyzed by Karl Fischer, GC/MS, GPC, FT-IR, and CHN elemental analysis. The result indicated that the hydropyrolysis of rice husk using Ni/LY char at high temperature can be used to improved the quality of bio-oil to level suitable for a potential liquid fuel and chemical feedstock.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    52
    Citations
    NaN
    KQI
    []