High operating temperature T2SL digital focal plane arrays for earth remote sensing instruments

2021 
In this presentation, we will report our recent efforts in achieving high performance in Antimonides type-II superlattice (T2SL) based infrared photodetectors using the barrier infrared detector (BIRD) architecture. The high operating temperature (HOT) BIRD focal plane arrays (FPAs) offer the same high performance, uniformity, operability, manufacturability, and affordability advantages as InSb. However, mid-wavelength infrared (MWIR) HOT-BIRD FPAs can operate at significantly higher temperatures (<150K) than InSb FPAs (typically 80K). Moreover, while InSb has a fixed cutoff wavelength (~5.4 μm), the HOT-BIRD offers a continuous adjustable cutoff wavelength, ranging from ~4 μm to <15 μm, and is therefore also suitable for long wavelength infrared (LWIR) as well. The LWIR detectors based on the BIRD architecture has also demonstrated significant operating temperature advantages over those based on traditional p-n junction designs. Two 6U SmalSat missions CIRAS (Cubesat Infrared Atmospheric Sounder) and HyTI (Hyperspectral Thermal Imager) are based on JPL’s T2SL BIRD focal plane arrays (FPAs). Based on III-V compound semiconductors, the BIRD FPAs offer a breakthrough solution for the realization of low cost (high yield), high-performance FPAs with excellent uniformity and pixel-to-pixel operability. We have also exploring the possibilities of integrating either metasurface resonator cavity or metasurface based flatlens with individual pixels to improve the signal-to-noise ratio of the detectors. Furthermore, we will discuss the advantages of the utilization of all digital read out integrated circuits with HOT-BIRDs.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []