Methyl iodide reactions on the surface of mechanically pre-activated platinum(II) salt in the heterogeneous system: K2PtCl4 powder–MeI vapor

2001 
Abstract Mechanically pre-activated K 2 PtCl 4 salt consumes methyl iodide producing methyl chloride at room temperature. The reaction mechanism includes the following steps sequence: oxidative addition of methyl iodide to platinum(II) complexes with intermediate formation of methyl platinum(IV) complexes and further decomposition of the latter in the course of innersphere reductive elimination yielding methyl chloride. The first step of the reaction proceeds owing to the assistance of active centers regenerated in the course of each event of MeI into MeCl transformation taking part in the chain halogen substitution process. It could be assumed that the role of active centers is played by coordinatively unsaturated platinum(II) complexes located on the surface. These species bearing a positive efficient charge can render electrophilic assistance for the nucleophilic substitution. The chain termination can be caused by recombination of coordinatively unsaturated platinum(II) complexes and interstitial chloride ions forming an inactive K 2 PtCl 4 complex.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    6
    References
    3
    Citations
    NaN
    KQI
    []