High-Gain N-Face AlGaN Solar-Blind Avalanche Photodiodes Using a Heterostructure as Separate Absorption and Multiplication Regions
2017
It is well known that -nitride semiconductors can generate the magnitude of MV/cm polarization electric field which is comparable with their ionization electric fields. To take full advantage of the polarization electric field, we design an N-face AlGaN solar-blind avalanche photodiode (APD) with an Al0.45Ga0.55N/Al0.3Ga0.7N heterostructure as separate absorption and multiplication (SAM) regions. The simulation results show that the N-face APDs are more beneficial to improving the avalanche gain and reducing the avalanche breakdown voltage compared with the Ga-face APDs due to the effect of the polarization electric field. Furthermore, the Al0.45Ga0.55N/Al0.3Ga0.7N heterostructure SAM regions used in APDs instead of homogeneous Al0.45Ga0.55N SAM structure can increase significantly avalanche gain because of the increased hole ionization coefficient by using the relatively low Al-content AlGaN in the multiplication region. Meanwhile, a quarter-wave AlGaN/AlN distributed Bragg reflector structure at the bottom of the device is designed to remain a solar-blind characteristic of the heterostructure SAM-APDs.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
19
References
1
Citations
NaN
KQI