Electron Transport Suppression from Tip-π State Interaction on Si(100)-2 × 1 Surfaces.

2011 
We investigate the electron transport between a scanning tunneling microscope tip and Si(100)-2 × 1 surfaces with four distinct configurations by performing calculations using density functional theory and the nonequilibrium Green’s function method. Interestingly, we find that the conducting mechanism is altered when the tip−surface distance varies from large to small. At a distance larger than the critical value of 4.06 A, the conductance is increased with a reduction in distance owing to the π state arising from the silicon dimers immediately under the tip; this in turn plays a key role in facilitating a large transmission probability. In contrast, when the tip is closer to the substrate, the conductance is substantially decreased because the π state is suppressed by the interaction with the tip, and its contribution in the tunneling channels is considerably reduced.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    22
    References
    3
    Citations
    NaN
    KQI
    []