Confinement of relativistic electrons in a magnetic mirror en route to a magnetized relativistic pair plasma

2021 
Creating a magnetized relativistic pair plasma in the laboratory would enable the exploration of unique plasma physics relevant to some of the most energetic events in the universe. As a step toward a laboratory pair plasma, we have demonstrated an effective confinement of multi- MeV electrons inside a pulsed-power-driven 13 T magnetic mirror field with a mirror ratio of 2.6. The confinement is diagnosed by measuring the axial and radial losses with magnetic spectrometers. The loss spectra are consistent with ≤2.5 MeV electrons confined in the mirror for ∼1 ns. With a source of 1012 electron-positron pairs at comparable energies, this magnetic mirror would confine a relativistic pair plasma with Lorentz factor γ∼6 and magnetization σ∼40.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    48
    References
    0
    Citations
    NaN
    KQI
    []