Cationic Mobility Via Cation-Exchange Mechanism on Poly(8-Hydroxyquinoline) Matrix

2009 
The insertion of Al(III) cation into a poly(8-Hydroxyquinoline) (PHQ) instead of some metal ions such as Co(II), Ni(II), Zn(II) or Fe(III) ions via cation-exchange mechanism has been studied by several techniques. The presence of Al(III) and the absence of Co(II) cations has been proved by elemental analysis of the polymer chelates product. Molecular mechanics (MM+) calculations showed that the potential energy (PE, kJ mol−1) of the optimum molecular geometric structure (OMG) of the PHQ–Al(III) matrix is about seventy-six (76.185) greater than the PE of the PHQ–Co(II) complex. The TGA thermograms show that the PHQ–Al(III) matrix is thermally unstable than the PHQ–Co(II) complex under the same conditions. These observations indicate that the PHQ–Al(III) is expanded coil-like form. So, the thermal decomposition of PHQ–Al(III) complex is easy than the compacted coil-likes form of PHQ–Co(II) complex. The incorporation of Al(III) ion via cation-exchange properties have been investigated by spectrophotometric technique. The decrease of the absorbance at about ~370 nm of PHQ–Co(II) complex associated with increasing concentration of Al(III) revealed the replacement of that metal ion by Al(III) into PHQ chain. The cation-exchange constant (Kex) of the divalent ions [Ni(II), Co(II), Cr(II), Zn(II), Mn(II), Mg(II) and Cu(II)] from PHQ–M(II) by the additions of Al(III) according to the following series: Ni(II) > Co(II) > Cr(II) > Cu(II) > Zn(II) > Mn(II) > Mg(II).
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    18
    References
    2
    Citations
    NaN
    KQI
    []