Isolating contiguous Pt atoms and forming Pt-Zn intermetallic nanoparticles to regulate selectivity in 4-nitrophenylacetylene hydrogenation

2019 
Noble metals play a momentous role in heterogeneous catalysis but still face a huge challenge in selectivity control. Herein, we report isolating contiguous Pt atoms and forming Pt-Zn intermetallic nanoparticles as an effective strategy to optimize the selectivity of Pt catalysts. Contiguous Pt atoms are isolated into single atoms and Pt-Zn intermetallic nanoparticles are formed which are supported on hollow nitrogen-doped carbon nanotubes (PtZn/HNCNT), as confirmed by aberration-corrected high-resolution transmission electron microscopy and X-ray absorption spectrometry measurements. Interestingly, this PtZn/HNCNT catalyst promotes the hydrogenation of 4-nitrophenylacetylene to 4-aminophenylacetylene with a much higher conversion ( > 99%) and selectivity (99%) than the comparison samples with Pt isolated-single-atomic-sites (Pt/HNCNT) and Pt nanoparticles (Pt/CN). Further density functional theory (DFT) calculations disclose that the positive Zn atoms assist the adsorption of nitro group and Pt-Zn intermetallic nanoparticles facilitate the hydrogenation on nitro group kinetically. Noble metals play a momentous role in heterogeneous catalysis but still face a huge challenge in selectivity control. Herein, the authors demonstrate that isolating contiguous Pt atoms and forming Pt-Zn intermetallic nanoparticles is an effective strategy to optimize the selectivity of Pt catalysts.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    55
    References
    47
    Citations
    NaN
    KQI
    []