Chlorophyll fluorescence performance of sweet almond [Prunus dulcis (Miller) D. Webb] in response to salinity stress induced by NaCl

2006 
One-year old sweet almond (Prunus dulcis) seedlings were submitted to four levels of salt stress induced by NaCl, namely 0.3, 0.5, 0.7, and 1.0 S m−1. Effects of salt stress on a range of chlorophyll (Chl) fluorescence parameters (Chl FPs) and Chl contents were investigated in order to establish an eco-physiological characterization of P. dulcis to salinity. Salt stress promoted an increase in F0, Fs, and F0/Fm and a decrease in Fm, F′m, Fv/Fm, qP, ΔF/F′m, Fv/F0, and UQF(rel), in almost all Chl fluorescence yields (FY) and FPs due to its adverse effect on activity of photosystem 2. No significant changes were observed for quenchings qN, NPQ, and qN(rel). The contents of Chl a and b and their ratio were also significantly reduced at increased salt stress. In general, adverse salinity effects became significant when the electric conductivity of the nutrient solution (ECn) exceeded 0.3 S m−1. The most sensitive salt stress indicators were Fv/F0 and Chl a content, and they are thus best used for early salt detection in P. dulcis. Monitoring of a simple Chl FY, such as F0, also gave a good indication of induced salt stress due to the significant correlations observed between the different Chl FYs and FPs. Even essential Chl FYs, like F0, Fm, F′m, and Fs, and mutually independent Chl FPs, like Fv/F0 and qP, were strongly correlated with each other.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    60
    References
    69
    Citations
    NaN
    KQI
    []