Design and testing of a 96-channel neural interface module for the Networked Neuroprosthesis system

2019 
Background The loss of motor functions resulting from spinal cord injury can have devastating implications on the quality of one’s life. Functional electrical stimulation has been used to help restore mobility, however, current functional electrical stimulation (FES) systems require residual movements to control stimulation patterns, which may be unintuitive and not useful for individuals with higher level cervical injuries. Brain machine interfaces (BMI) offer a promising approach for controlling such systems; however, they currently still require transcutaneous leads connecting indwelling electrodes to external recording devices. While several wireless BMI systems have been designed, high signal bandwidth requirements limit clinical translation. Case Western Reserve University has developed an implantable, modular FES system, the Networked Neuroprosthesis (NNP), to perform combinations of myoelectric recording and neural stimulation for controlling motor functions. However, currently the existing module capabilities are not sufficient for intracortical recordings.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    48
    References
    13
    Citations
    NaN
    KQI
    []