Carboxylate Adsorption on Rutile TiO2(100): Role of Coulomb Repulsion, Relaxation, and Steric Hindrance.

2021 
Understanding the adsorption and photoactivity of acetic acid and trimethyl acetic acid on TiO2 surfaces is important for improving the performance of photocatalysts and dye-sensitized solar cells. Here we present a structural study of adsorption on rutile TiO2(100)-1 × 1 and -1 × 3 using Scanning Tunnelling Microscopy and Density Functional Theory calculations. Exposure of both terminations to acetic acid gives rise to a ×2 periodicity in the [001] direction (i.e., along Ti rows), with a majority ordered c(2 × 2) phase in the case of the 1 × 1 termination. The DFT calculations suggest that the preference of c(2 × 2) over the 2 × 1 periodicity found for TiO2(110)-1 × 1 can be attributed to an increase in interadsorbate Coulomb repulsion. Exposure of TiO2(100)-1 × 1 and -1 × 3 to trimethyl acetic acid gives rise to largely disordered structures due to steric effects, with quasi-order occurring in small areas and near step edges where these effects are reduced.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    56
    References
    1
    Citations
    NaN
    KQI
    []