Coalgebraic Formal Curve Spectra and the Annular Tower
2019
We import into homotopy theory the algebro-geometric construction of the cotangent space of a geometric point on a scheme. Specializing to the category of spectra local to a Morava $K$-theory of height $d$, we show that this can be used to produce a choice-free model of the determinantal sphere as well as an efficient Picard-graded cellular decomposition of $K(\mathbb Z_p, d+1)$. Coupling these ideas to work of Westerland, we give a "Snaith's theorem" for the Iwasawa extension of the $K(d)$-local sphere.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
35
References
2
Citations
NaN
KQI