Method for Translation and Rotation Decoupling of Test Mass in Full-Maglev Vertical Superconducting Gravity Instruments

2020 
For full-maglev vertical superconducting gravity instruments, displacement control in the non-sensitive axis is a key technique to suppress cross-coupling noise in a dynamic environment. Motion decoupling of the test mass is crucial for the control design. In practice, when levitated, the test mass is always in tilt, and unknown parameters will be introduced to the scale factors of displacement detection, which makes motion decoupling work extremely difficult. This paper proposes a method for decoupling the translation and rotation of the test mass in the non-sensitive axis for full-maglev vertical superconducting gravity instruments. In the method, superconducting circuits at low temperature and adjustable gain amplifiers at room temperature are combined to measure the difference between the scale factors caused by the tilt of the test mass. With the measured difference of the scale factors, the translation and rotation are decoupled according to the theoretical model. This method was verified with a test of a home-made full-maglev vertical superconducting accelerometer in which the translation and rotation were decoupled.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    16
    References
    1
    Citations
    NaN
    KQI
    []