Rigorous mathematical modelling for a Fast Corrector Power Supply in TPS

2017 
To enhance the stability of beam orbit, a Fast Orbit Feedback System (FOFB) eliminating undesired disturbances was installed and tested in the 3rd generation synchrotron light source of Taiwan Photon Source (TPS) of National Synchrotron Radiation Research Center (NSRRC). The effectiveness of the FOFB greatly depends on the output performance of Fast Corrector Power Supply (FCPS); therefore, the design and implementation of an accurate FCPS is essential. A rigorous mathematical modelling is very useful to shorten design time and improve design performance of a FCPS. A rigorous mathematical modelling derived by the state-space averaging method for a FCPS in the FOFB of TPS composed of a full-bridge topology is therefore proposed in this paper. The MATLAB/SIMULINK software is used to construct the proposed mathematical modelling and to conduct the simulations of the FCPS. Simulations for the effects of the different resolutions of ADC on the output accuracy of the FCPS are investigated. A FCPS prototype is realized to demonstrate the effectiveness of the proposed rigorous mathematical modelling for the FCPS. Simulation and experimental results show that the proposed mathematical modelling is helpful for selecting the appropriate components to meet the accuracy requirements of a FCPS.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    3
    References
    2
    Citations
    NaN
    KQI
    []