Statistical parametric speech synthesis using generative adversarial networks under a multi-task learning framework

2017 
In this paper, we aim at improving the performance of synthesized speech in statistical parametric speech synthesis (SPSS) based on a generative adversarial network (GAN). In particular, we propose a novel architecture combining the traditional acoustic loss function and the GAN's discriminative loss under a multi-task learning (MTL) framework. The mean squared error (MSE) is usually used to estimate the parameters of deep neural networks, which only considers the numerical difference between the raw audio and the synthesized one. To mitigate this problem, we introduce the GAN as a second task to determine if the input is a natural speech with specific conditions. In this MTL framework, the MSE optimization improves the stability of GAN, and at the same time GAN produces samples with a distribution closer to natural speech. Listening tests show that the multi-task architecture can generate more natural speech that satisfies human perception than the conventional methods.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    25
    Citations
    NaN
    KQI
    []