Evidence that Arrhenius high-temperature aging behavior for an EPDM o-ring does not extrapolate to lower temperatures

1997 
Because of the need to significantly extend the lifetimes of weapons, and because of potential implications of environmental O-ring failure on degradation of critical internal weapon components, the authors have been working on improved methods of predicting and verifying O-ring lifetimes. In this report, they highlight the successful testing of a new predictive method for deriving more confident lifetime extrapolations. This method involves ultrasensitive oxygen consumption measurements. The material studied is an EPDM formulation use for the environmental O-ring the W88. Conventional oven aging (155 C to 111 C) was done on compression molded sheet material; periodically, samples were removed from the ovens and subjected to various measurements, including ultimate tensile elongation, density and modulus profiles. Compression stress relaxation (CSR) measurements were made at 125 C and 111 C on disc shaped samples (12.7 mm diameter by 6 mm thick) using a Shawbury Wallace Compression Stress Relaxometer MK 2. Oxygen consumption measurements were made versus time, at temperatures ranging from 160 C to 52 C, using chromatographic quantification of the change in oxygen content caused by reaction with the EPDM material in sealed containers.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    9
    Citations
    NaN
    KQI
    []