Activatable Water-Soluble Probes Enhance Tumor Imaging by Responding to Dysregulated pH and Exhibiting High Tumor-to-Liver Fluorescence Emission Contrast

2016 
Dysregulated pH has been recognized as a universal tumor microenvironment signature that can delineate tumors from normal tissues. Existing fluorescent probes that activate in response to pH are hindered by either fast clearance (in the case of small molecules) or high liver background emission (in the case of large particles). There remains a need to design water-soluble, long circulating, pH-responsive nanoprobes with high tumor-to-liver contrast. Herein, we report a modular chemical strategy to create acidic pH-sensitive and water-soluble fluorescent probes for high in vivo tumor detection and minimal liver activation. A combination of a modified Knoevenagel reaction and PEGylation yielded a series of NIR BODIPY fluorophores with tunable pKas, high quantum yield, and optimal orbital energies to enable photoinduced electron transfer (PeT) activation in response to pH. After intravenous administration, Probe 5c localized to tumors and provided excellent tumor-to-liver contrast (apparent T/L = 3) because ...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    66
    References
    35
    Citations
    NaN
    KQI
    []