A New Eddy Dissipation Rate Formulation for the Terminal Area PBL Prediction System (TAPPS)

2000 
The TAPPS employs the MASS model to produce mesoscale atmospheric simulations in support of the Wake Vortex project at Dallas Fort-Worth International Airport (DFW). A post-processing scheme uses the simulated three-dimensional atmospheric characteristics in the planetary boundary layer (PBL) to calculate the turbulence quantities most important to the dissipation of vortices: turbulent kinetic energy and eddy dissipation rate. TAPPS will ultimately be employed to enhance terminal area productivity by providing weather forecasts for the Aircraft Vortex Spacing System (AVOSS). The post-processing scheme utilizes experimental data and similarity theory to determine the turbulence quantities from the simulated horizontal wind field and stability characteristics of the atmosphere. Characteristic PBL quantities important to these calculations are determined based on formulations from the Blackadar PBL parameterization, which is regularly employed in the MASS model to account for PBL processes in mesoscale simulations. The TAPPS forecasts are verified against high-resolution observations of the horizontal winds at DFW. Statistical assessments of the error in the wind forecases suggest that TAPPS captures the essential features of the horizontal winds with considerable skill. Additionally, the turbulence quantities produced by the post-processor are shown to compare favorably with corresponding tower observations.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    4
    Citations
    NaN
    KQI
    []