Developmental regulation of the TCR zeta-chain. Differential expression and tyrosine phosphorylation of the TCR zeta-chain in resting immature and mature T lymphocytes.

1994 
The zeta subunit of the TCR complex targets receptor surface expression, is phosphorylated on tyrosine residues upon T cell activation, and is implicated in signal transduction after TCR ligation. Here we show that, although intrathymic expression of the murine TCR-associated zeta-chain relative to the other chains of the Ag receptor complex remains unchanged during early thymocyte development, there is a doubling of TCR-associated zeta-chain surface expression upon thymocyte maturation. The ratio of tyrosine-phosphorylated relative to nonphosphorylated TCR-associated zeta-chain also changes with thymocyte development. This ratio was quantified after the purification and detergent extraction of receptor complexes from freshly isolated immature or mature thymocytes. Immunoprecipitation of the zeta-chain released from the complex allowed for the isolation of the tyrosine-phosphorylated and nonphosphorylated forms of TCR-associated zeta-chain. Intracellular free zeta-chain was characterized by immunoprecipitation after clearing the cell lysate of intact TCR complexes. Densitometric analysis of immunoblots indicated that surface phosphorylated zeta-chain is more abundant in immature relative to mature T cell populations, whereas the inverse is true of intracellular phosphorylated zeta-chain. Surface phosphorylated zeta-chain also migrated at a higher m.w. than its cytoplasmic counterpart, suggesting that it is more highly modified on some or all of its available tyrosines. These findings demonstrate that the stoichiometry and post-translational modification of the TCR complex are regulated, in vivo, and may determine the functional maturation of T cell signaling, selection, and activation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    32
    Citations
    NaN
    KQI
    []