Ultrasonic wave propagation assessment of native cartilage explants and hydrogel scaffolds for tissue engineering

2012 
Non-destructive techniques characterising the mechanical properties of cells, tissues, and biomaterials provide baseline metrics for tissue engineering design. Ultrasonic wave propagation and attenuation has previously demonstrated the dynamics of extracellular matrix synthesis in chondrocyte-seeded hydrogel constructs. In this paper, we describe an ultrasonic method to analyse two of the construct elements used to engineer articular cartilage in real-time, native cartilage explants and an agarose biomaterial. Results indicated a similarity in wave propagation velocity ranges for both longitudinal (1500–1745 m/s) and transverse (350–950 m/s) waveforms. Future work will apply an acoustoelastic analysis to distinguish between the fluid and solid properties including the cell and matrix biokinetics as a validation of previous mathematical models.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    27
    References
    3
    Citations
    NaN
    KQI
    []