An inverted organic solar cell with an ultrathin Ca electron-transporting layer and MoO3 hole-transporting layer

2009 
An inverted organic solar cell based on poly(3-hexylthiophene) (P3HT) and 1-(3-methoxycarbonyl)-propyl-1-phenyl-(6,6)C61 (PCBM) was fabricated with an ultrathin Ca electron-transporting layer and MoO3 hole-transporting layer. The 1 nm Ca on indium tin oxide (ITO) electrode modifies the work function of ITO suitable for electron extraction. An appropriate thickness of MoO3 hole extraction layer is also essential to effectively prevent exciton quenching at the Ag anode, yet not introduce much voltage loss and series resistance. The optical field distribution across the active layer was also simulated to discuss the effect of MoO3 thickness on the photocurrent. The maximum power conversion efficiency obtained was 3.55% under simulated 100 mW/cm2 (AM 1.5G) solar irradiation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    26
    References
    157
    Citations
    NaN
    KQI
    []