Role of Active Site Binding Interactions in 4-Chlorobenzoyl-Coenzyme A Dehalogenase Catalysis†

2001 
Chlorobenzoyl-coenzyme A (4-CBA-CoA) dehalogenase catalyzes the hydrolytic dehalo- genation of 4-CBA-CoA to 4-hydroxybenzoyl-CoA (4-HBA-CoA) via a multistep mechanism involving initial attack of Asp145 on C(4) of the substrate benzoyl ring to form a Meisenheimer intermediate (EMc), followed by expulsion of the chloride ion to form an arylated enzyme intermediate (EAr) and then ester hydrolysis in the EAr to form product. This study examines the role of binding interactions in dehalogenase catalysis. The enzyme and substrate groups positioned for favorable binding interaction were identified from the X-ray crystal structure of the enzyme-4-HBA-3'-dephospho-CoA complex. These groups were individually modified (via site-directed mutagenesis or chemical synthesis) for the purpose of disrupting the binding interaction. The changes in the Gibbs free energy of the enzyme-substrate complex (¢¢GES) and enzyme-transition state complex (¢¢G q ) brought about by the modification were measured. Cases where ¢¢G q exceeds ¢¢GES are indicative of binding interactions used for catalysis. On the basis of this analysis, we show that the H-bond interactions between the Gly114 and Phe64 backbone amide NHs and the substrate benzoyl CdO group contribute an additional 3.1 kcal/mol of stabilization at the rate-limiting transition state. The binding interactions between the enzyme and the substrate CoA nucleotide moiety also intensify in the rate-limiting transition state, reducing the energy barrier to catalysis by an additional 3.3 kcal/mol. Together, these binding interactions contribute 10 6 to the kcat/Km.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    11
    References
    36
    Citations
    NaN
    KQI
    []