Pursuit-evasion Game for Nonholonomic Mobile Robots With Obstacle Avoidance using NMPC

2020 
In this work, non-cooperative competitive games between two unmanned ground robots using Nonlinear Model Predictive Control (NMPC) while incorporating obstacle avoidance techniques are studied. The objective of the first player (pursuer) is to minimize the relative distance and orientation between itself and the second player (evader) while avoiding obstacles, whereas the evader does the opposite. The Pursuit-Evasion Game (PEG) being a typical class of a differential game is formulated as a zero-sum game with two homogeneous players in five different game scenarios. The objective function of each player is formulated as a double optimization problem and is solved separately using NMPC techniques. The optimal trajectory of each player is computed iteratively by considering the best response of the opponent player. The level of information is assumed to be symmetric. Simulations of various scenarios show the winning possibility of each player.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    13
    References
    1
    Citations
    NaN
    KQI
    []