Study on heat transfer and cooling performance of copper foams cured MIL-101 adsorption unit tube

2019 
Abstract A composite copper foams cured MIL-101 (CFCM) prepared by a binderless dip-coating method was exploited. A CFCM-95 adsorption unit tube was developed and the heat transfer performance of CFCM-95 adsorber was studied. Parameters optimization of CFCM-95/isobutane working pair were determined. Results show that MIL-101 is uniformly cured in the three-dimensional dense pores of copper foams, and the maximum thermal conductivity of CFCM reaches 0.86 W/(m·K), which is 14 times higher than that of MIL-101 powder. The fluctuating heating time of unit volume of adsorbents in CFCM-95 adsorber (from 30 °C to 50 °C) is 1.56 s m3/kg, which is half that of MIL-101 fixed bed adsorber. Moreover, the cooling rate of the CFCM-95 adsorber (from 62 °C to 30 °C) is 1.1 °C/s, which is 3.5 times faster than that of MIL-101 fixed bed adsorber. The cooling capacity, specific cooling power (SCP) and volumetric cooling power (VCP) is 1.8, 2.6 and 4 times that of the adsorption cooling system (ACS) with MIL-101/isobutane working pair, respectively, and among them, VCP is up to 4.442 kW/m3. These results are of great significance for reducing the volume of adsorption chillers and promoting the applications of adsorption cooling technology.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    34
    References
    9
    Citations
    NaN
    KQI
    []