Composite Production and Industrial Robot Trajectory Calculation

2017 
This paper discusses the problem of composite production. Composites often supplant traditional materials such as steel, iron, wood, etc. The most important advantages of composites are their high strength and flexibility, low weight, long lifespan and minimum maintenance. The technology used in this article is based on a winding of a carbon (or a glass) filament rovings on a polyurethane core which is a frame shape in 3D space with a circular cross section. The polyurethane frame is fastened to the robot-end-effector of the robot arm and during the winding process goes through a fiber-processing head on the basis of the suitably determined robot-end-effector trajectory. The fiber-processing head is fixed in robot working space and is composed of three guide lines with coils of carbon rovings. Quality production of described type of composite depends primarily on the correct winding of fibers on a polyurethane frame. It is especially needed to ensure the correct angles of the fibers winding on a polyurethane frame and the homogeneity of individual winding layers. The polyurethane frame is specified in the local Euclidean coordinate system E3, the origin of this system is in the robot-end-effector. We use the matrix calculus to enumerate the trajectory of the robot-end-effector to determine the desired passage of the frame through the fiber-processing head. A practical example of the passage of a polyurethane frame through fiber-processing head is dealt with in the article. Of course, the determining calculation of the robot trajectory can be used in other applications of industrial robot use.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    4
    References
    1
    Citations
    NaN
    KQI
    []