Thermal Properties of Contemporary Bipolar Systems Using Infrared Imaging

2015 
Background Bipolar coagulation has enhanced the capabilities and safety profile of contemporary neurosurgery and has become indispensable in the neurosurgical armamentarium. Nevertheless, significant heat transfer issues remain to be resolved before it can achieve the status of minimal risk. Methods The Codman irrigating forceps, Codman ISOCOOL forceps, and Ellman bipolar forceps, powered by either Synergy or Ellman generators set at various power levels, were compared to investigate the combinations that would allow for the lowest rate of heat transfer. Using an infrared camera and ThermaGRAM imaging software, the temperature was calculated and used to estimate the degree of heat transfer. Results Codman ISOCOOL forceps powered the Ellman Surgitron generator showed the greatest dissipation (at mid-power, the luminance decreased from 250 units to 80 units within 60 seconds) and the least production of heat after activation. Codman ISOCOOL forceps powered by the Codman SYNERGY MALIS generator showed less heat dissipation (at mid-power, the luminance decreased from 250 units to 195 units within 60 seconds) than the Ellman forceps and Ellman Surgitron generator combination (at mid-power, the luminance decreased from 250 units to 125 units within 60 seconds). Conclusions These data suggest that the incorporation of the Ellman Surgitron Generator can result in the reduction of thermal transfer with conventional bipolar forceps compared with other generators. The combination with Codman ISOCOOL forceps can maximize the potential safety associated with bipolar coagulation. With regard to the use of comarketed pairs of forceps and generators, the combination of Ellman Surgitron Generator and Ellman bipolar forceps provided the best thermal profile.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    15
    References
    1
    Citations
    NaN
    KQI
    []