Modeling Boron and Indium Electrical Activities in Silicon in the Presence of Nitrogen

2001 
The ab initio pseudopotential code (VASP) was employed to explore indium and boron electrical activities in silicon in the presence of nitrogen. Electrical activities for the combinations B+N, In+N, and In+B+N were explored. Formation energy of a negatively charged supercell, (E-)f, and a band gap, Eg, from calculations with one k point were chosen as indicators of acceptor activity. For separate dopants the calculated (E-)f and Eg values indicate that substitutional B and In are effective acceptors and N is an extremely weak donor. When nitrogen is adjacent to, or separated 3 - 5 bonds from B or In, it suppresses acceptor activity. Binding is greater for In+N than for B+N in agreement with secondary ion mass spectroscopy (SIMS) data that demonstrates a greater retention of N by In. This should lead to a greater drop in activity for In+N combination versus B+N one, in agreement with spreading resistance profiling (SRP) experiments. Loss of activity in In+B+N combination might be due to long range interactions between dopants.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    7
    References
    0
    Citations
    NaN
    KQI
    []