High-precision parameter estimation and the Zeno–anti-Zeno crossover in an atom–cavity-optomechanical system

2020 
A scheme is proposed to estimate the decay rates of the subsystem in an atom–cavity-optomechanical system which also is known as the hybrid optomechanical system. Quantum Fisher information and quantum Zeno effect (QZE) are investigated under different conditions. The results show that the estimation precision of the decay rates can reach $$9.64\times 10^{-6}$$ , $$3.49\times 10^{-4}$$ and $$7.91\times 10^{-5}$$ , respectively. The Zeno–anti-Zeno crossover can be realized in the hybrid optomechanical system. We find that both QZE and quantum anti-Zeno effect (QAZE) are always beneficial to the estimation of the mechanical oscillator decay rate. However, when the cavity decay rate is estimated, QAZE may enhance or inhibit the estimation precision at the different time regions. The results provide some potential applications in quantum networks and quantum Zeno switch.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    63
    References
    0
    Citations
    NaN
    KQI
    []