First-principles studies of the magnetic anisotropy of the Cu/FePt/MgO system

2013 
Using first-principles density-functional theory calculations, we systematically investigate the magnetic anisotropy of the multilayer system Cu/(FePt)n/MgO, a promising spintronics structure. Particularly, we have studied the influence of the epitaxial strain, thickness of the ferromagnetic layer, and different interfaces on the magnetic anisotropy energy (MAE) of the system. It is found that the thickness of FePt has slight influence on the MAE, while the increase of the in-plane lattice constant a, or tensile strain, can significantly reduce and even change the sign of the MAE. The calculated density of states shows that the occupation number of the minority spin channel of Fe dx2−y2 orbital decreases with the increase of a, which leads to the reduction of the orbital moment anisotropy of the Fe atom and therefore the decrease of MAE. We also consider the influence of the Cu/FePt and FePt/MgO interfaces on the MAE, and find that both interfaces can reduce the MAE. Especially, the effect of the Cu/FePt interface is more pronounced due to the increased occupation number of the minority spin channel of Fe dz2 orbital.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    12
    Citations
    NaN
    KQI
    []