Hydrogen Bonding in a Reversible Comb Polymer Architecture: A Microscopic and Macroscopic Investigation
2016
In this work, an investigation of the hydrogen-bonding mechanism in a transiently branched comb-like polymer system in the melt is reported. The system under investigation consists of a polybutylene oxide (PBO)-based backbone, randomly functionalized with thymine (thy) groups, in combination with shorter PBO graft chains, end-functionalized with diaminotriazine (DAT) groups. The functional groups are able to associate through hydrogen bonding. The heterocomplementary association of these groups leads to the formation of a transiently branched comb-like polymer system. Since recently virtually exclusive heterocomplementary association could be observed in the supramolecular association of telechelically modified oligomeric PEG chains, here we aim to extend the supramolecular assembly mechanism toward branched structures. The present work combines small angle neutron scattering (SANS) experiments on a selectively labeled system with macroscopic dynamics measured in linear rheology response. The association ...
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
51
References
14
Citations
NaN
KQI